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Experimental evolution

Studies of evolution-in-action
using model organisms
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Traditional study of viruses in the lab
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Novel methods for studying virus growth

Microplate reader
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A New Method for Measuring Virus Fithess

Phage too small to count directly.
Measure phage fitness by tracking host?
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Problems: Time consuming, Strong host growth means lower phage fithess

Small sample size



A New Method for Measuring Virus Fithess

Phage too small to count directly.
Measure phage fitness by tracking host?
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High throughput measures of virus fithess

* Simulated results
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Evolution of Robustness in RNA Viruses

Evolution of Sex
Robustness
Evolvability



Model: Bacteriophage ¢6

D. Bamford

e ~13 kb dsRNA genome
« 3 segments/particle
«0.01<U<0.1

e lipid coated
 phyto-pathogenic Pseudomonas hosts
o lytic life cycle



Phage ¢6 replication cycle




Phage ¢6 genetics

CORE CAPSID T=13 SURFACE VIRION
Protein P6  Protein P3

protein P8 protein P4

protein P1

INNER CAPSID T=2 i i =13
CORE CAPSID

protein P4

CORE PARTICLE

RNA synthesis

=2
ReRpE2 INNER CAPSID

protein P1

segment L polymerase and packaging functions. pac sequence at 5' end.
6374 bp

gene 'Igtna , gene 2 gene 4 gene 1

segment M membrane proteins including host specificity gene 3. pac sequence at 5' end.

4063 bp

gene 3 gene 13

gene 10 gene6

segment S nucleocapsid shell P8, ns protein P12, membrane protein P9, lysin P5. pac sequence at 5' end.
gene 8 gene 9
gene 12 gene 5




Infection modes of phage ¢6

CLONAL INFECTION CO-INFECTION
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 “sex” via segment reassortment
* N0 recombination (3-locus population genetics)




®6 hybridization in the lab

Turner et al. 1999, J Virology




®6 hybridization in the lab

Plaque growth (phenotypes) on agar

hybrid
offspring

Turner et al. 1999, J Virology




®6 hybridization in the lab
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Is sex beneficial in evolving populations of viruses?

Prediction: Sex promotes mixis (linkage equilibrium)
Brings together good alleles (directional selection)
Tears apart bad alleles (combat mutational load)

Assumption: mixis is useful




Gauging phenotypic success:
Fithess assay
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General theory on evolutionary advantage of sex

Frequency of deleterious allele

m Clonal
A Sexual (Co-infecting)

Froissart et al. 2004, Genetics




Known mutational load: negative epistasis

O o o
tn O O

| 1
g O

@Q
0
-
4
o
=
O
-+
Q{
2
e
ALY
@
L N
N
)]
Q@
-
o=
qg—
&)
O
—
=
]
QO
=

BoA O WNN
;O o OO

1 2
Mutation number

Turner et al. 2009 (in Garland & Rose: Experimental Evolution)
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Known mutational load: negative epistasis
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Testing advantage of sex in combating load

Advantage of sex prediction:
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Testing advantage of sex in combating load

Advantage of sex prediction:
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Mechanism: Complementation

 Buffers mutational effects
» Selectable trait (Turner and Chao 1999, Nature)



Effect of complementation on combating load

Advantage of sex prediction:
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Mutational Robustness

Phenotypic constancy in face of mutational change

Critical for evolution: Natural selection is fueled
by phenotypically expressed genetic variation




Mutational Robustness
Phenotypic constancy in face of mutational change

Critical for evolution: Natural selection is fueled
by phenotypically expressed genetic variation

Abundant theory, few experiments




Co-infection and Robustness

» Co-infection allows complementation
e Complementation is built-in robustness mechanism

THEREFORE, Complementation (hence, co-infection)
should weaken selection for individual robustness




DESIGN: Does infection mode impact robustness?
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DESIGN: Does infection mode impact robustness?

$»6

common ancestor

Low co-infection
treatment

High co-infection
treatment

300
generations

10 random clones
/isolated per population

(60 total)

20 days
bottlenecking
(mutation
accumulation)
to guage
robustness




Analysis

Measure fitness (W) for each lineage
before and after mutation accumulation

A logW = IOngost-bottIeneck — IOg\Npre-bottler1eck




Predictions:

Var (AlogW)conal lineages

Mean (AlogW)cional lineages

A logW &




Predictions:

Var (AlogW)C|ona| lineages < Var (AIOgW)Co-infection lineages
Mean (AlogW)C|ona| lineages < Mean (AIOgW)Co-infection lineages

A logW ¥
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Co-infecting viruses are less robust
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Molecular evidence?

Prediction:
Robust populations have more haplotypes & more substitutions/genotype

Analysis:
Sequenced regions of L and S segments for the 60 pre-bottleneck clones

segment L polymerase and packaging functions. pac sequence at 5' end.

gene 14 gene 2 gene 4

gene 1
gene 7

segment M membrane proteins including host specificity gene 3. pac sequence at 5' end.
4063 bp

gene 10 gene 6 gene 3 gene 13

segment S nucleocapsid shell P8, ns protei membrane protein P9, lysin P5. pac sequence at 5' end.
2948 bp

gene 8 gene 9
gene 12 gene 5



Molecular evidence?
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IS THERE A LINK BETWEEN
ROBUSTNESS AND EVOLVABILITY?




Does robustness promote evolvability?

NO: Robustness reduces phenotypic variation, thereby
Impeding selection

YES: Robustness allows protein folding/stability despite mutation,
facilitating protein innovation




Temperature Survival Assay

5 min

Lysate

v Temperature

\ Incubation \

% Survivors = (N,/N,) * 100



Reaction norm for wild type

37.5 40.0 42.5
Temperature

McBride et al. BMC Evol Biol 2008




Robust and brittle clones survive equally at 45°C
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Do robust clones show greater evolvability?

Thermal incubation
t> (5 min. at 45°C)

Lysate High density
growth/harvest

¥

50 generations

A%S= % SEvoIved - % SAncestraI
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Robust Lineages

McBride et al. BMC Evol Biol 2008




Lineages founded by robust viruses are more evolvable

1234567 89101112 1 2 3 456 7 8 9101112
Robust Lineages Brittle Lineages

McBride et al. BMC Evol Biol 2008




Mutability does not explain differences in evolvability
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Mechanism for genetic robustness?
Protein stability/thermotolerance

robust clones
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Summary 1

« Co-infection (complementation) weakens selection
to maintain robustness

C Robust viruses more evolvable under heat shock

« Evolution itself has capacity to evolve




CAN ROBUSTNESS
BE SELECTED?




How can robustness be selected in phage ¢6?

» Evolved changes in robustness led to differential
evolvability of thermotolerance

e Robusthess and thermotolerance seem to be correlated

» Thus, selection for thermotolerance should yield robustness
l.e., Bidirectional Selection should be possible

HYPOTHESIS: Robustness should evolve as a by-product of
evolved thermotolerance




Isolation of ancestor clones

Use each plaque to
initiate 2 ‘sister’ lineages

for evolution Wild type
Plate from frozen ANC
stock of wild type ¢6 < Tl
/ 1 Cl
2 ”
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T~ T3 ! }
3<C3 T1 T2 T3 C1 C2 C3

Treatment Control

Choose 3 plaques
at random

McBride and Turner (unpublished)



Pre-evolution reaction norm
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Experimental design

Thermal incubation
(5 min at 50°C)

High density
growth/harvest

¥

50 generations

Wild type
ANC

v
T1L T2 T3 Cl1 C2 C3

Treatment Control
50C 25C

McBride and Turner (unpublished)



Post-evolution reaction norm
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McBride and Turner (unpublished)



Testing for the bidirectional response

» Treatment populations survive heat shock
better than controls

 Are they also more robust against mutations?




Testing for the bidirectional response

Isolate 6 clones

Experimental design  perpopuator

-
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(resistance in P6 gene)

McBride and Turner (unpublished)



Testing for the bidirectional response

Isolate 6 clones Isolate 6 clones

EXperi mental d eSig n per population per ancestor
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Measure fithess (W) on P. phaseolicola for each set of ancestor
clones before and after mutagenesis

A logW = logW ,ost.grt — 10gW e gt
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McBride and Turner (unpublished)



Measure fithess (W) on P. phaseolicola for each ancestor
and evolved lineage before and after mutagenesis

A logW = logW ,ost.grt — 10gW e gt

Prediction following evolution:

Var (AlogW)+reament lineages < Var (AlogW)contro lineages

0

A logW o

__“ﬁ ______________ &\.---




Post-evolution robustness
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» Evolved thermotolerance fosters robustness

« Mutation accumulation assays underway
McBride and Turner (unpublished)



What is the mechanism?

3 evolution studies

» Robust vs. Brittle clones evolved at 45°C
(McBride et al. 2008)

* Robust vs. Brittle populations evolved at 45°C
(Goldhill and Turner, unpubl.)

» Wild type clones evolved at 50°C
(McBride and Turner, unpubl.)

S segment:
P5 lysin gene mutation
G2238U transversion V2> F

segment S nucleocapsid s otein P12, membrane protein P9, lysin P5. pac sequence at 5' end
2948 bp

Bulls-eye plaque at 25°C
Mildly deleterious allele




phi6é P5 gene: robustness locus?

Genome

dsRNA segments: S, M, L

olymerase complex (core)
P1 major capsid protein

P2 RNA-dependent RNA polymerase
/M packaging NTPase, transcription
P7 assembly cofactor, packaging factor

Nucleocapsid surface shell P8

3
"y ’\P{Iyticenzyme, peptidoglycan penetraE
n

s @

velope

P3 receptor-binding spike
P6 fusogenic protein

P9 major envelope protein

Cvirkaite-Krupovic et al 2010 J Gen Virol



Summary 2
« Adaptation to extreme heat shock broadens the
thermal niche

« Selection for thermotolerance causes indirect
selection for robustness (bidirectional response)

« Thelysin gene may be underlying mechanism
(global robustness regulator)
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