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Evolution of Robustness



Experimental evolution 

Studies of evolution-in-action 
using model organisms
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Traditional study of viruses in the lab

Bacterial culture

Phage stock

Overnight incubation

Each plaque contains
~106 progeny phage



Novel methods for studying virus growth
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Liquid-handling robot
Microplate reader

Wild type P phaseolicola bacteria
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A New Method for Measuring Virus Fitness
Phage too small to count directly.  
Measure phage fitness by tracking host?

Traditional method: 
Grow two strains on one plate and      

count plaques.

Problems: Time consuming, 
Small sample size

wild type

PT 88 
mutant

New method: 
Measure growth curves of infected hosts in liquid.  
Strong host growth means lower phage fitness
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High throughput measures of virus fitness

Simulations show that peak time 
correlates with growth rate

Simulated results

Turner et al. (submitted)

Empirical results show 
similar correlation

Experimental results



Evolution of Robustness in RNA Viruses

Evolution of Sex 
Robustness
Evolvability



• ~13 kb dsRNA genome
• 3 segments/particle 
• 0.01 < U < 0.1 

• lipid coated
• phyto-pathogenic Pseudomonas hosts
• lytic life cycle

D. Bamford

Model: Bacteriophage φ6



Phage φ6 replication cycle



Phage φ6 genetics



Infection modes of phage φ6 

• “sex” via segment reassortment
• no recombination (3-locus population genetics)

CLONAL INFECTION

cell

phages

CO-INFECTION



Turner et al. 1999, J Virology 

φ6 hybridization in the lab 

p2 2pq   q2

p q 
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φ6 hybridization in the lab 

p2 2pq   q2

p q 
Plaque growth (phenotypes) on agar

hybrid
offspring parent 



Turner et al. 1999, J Virology 

φ6 hybridization in the lab 

p2 2pq q2

p q 



Is sex beneficial in evolving populations of viruses?

Prediction: Sex promotes mixis (linkage equilibrium) 

Brings together good alleles (directional selection)

Tears apart bad alleles (combat mutational load)

Assumption: mixis is useful



R0 = N1/N2 R1 = N1/N2

Fitness (W) = R1/R0

φ1vs φ2

Gauging phenotypic success:
Fitness assay



Froissart et al. 2004, Genetics 

Clonal
Sexual (Co-infecting) 

General theory on evolutionary advantage of sex
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Turner et al. 2009 (in Garland & Rose: Experimental Evolution)

Known mutational load: negative epistasis
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Known mutational load: negative epistasis

Turner et al. 2009 (in Garland & Rose: Experimental Evolution)



Froissart et al. 2004 Genetics  

Clonal
Co-infecting 

Fr
eq

ue
nc

y 
of

 d
el

et
er

io
us

 a
lle

le

Advantage of sex prediction:

Testing advantage of sex in combating load
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Mechanism: Complementation

• Buffers mutational effects
• Selectable trait (Turner and Chao 1999, Nature)



Froissart et al. 2004 Genetics  
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Mutational Robustness

Phenotypic constancy in face of mutational change 

Critical for evolution: Natural selection is fueled 
by phenotypically expressed genetic variation



Mutational Robustness

Phenotypic constancy in face of mutational change 

Critical for evolution: Natural selection is fueled 
by phenotypically expressed genetic variation

Abundant theory, few experiments  



Co-infection and Robustness

• Co-infection allows complementation

• Complementation is built-in robustness mechanism 

THEREFORE, Complementation (hence, co-infection) 
should weaken selection for individual robustness 



DESIGN: Does infection mode impact robustness?
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Analysis 

Measure fitness (W) for each lineage
before and after mutation accumulation

∆ logW = logWpost-bottleneck – logWpre-bottleneck



Predictions: 

Var (∆logW)Clonal lineages   <  Var (∆logW)Co-infection lineages

Mean (∆logW)Clonal lineages < Mean (∆logW)Co-infection lineages

∆ logW 

0
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Montville, Froissart et al. PLoS Biology 2005



Montville, Froissart et al. PLoS Biology 2005

Co-infecting viruses are less robust



Prediction:
Robust populations have more haplotypes & more substitutions/genotype

Analysis:
Sequenced regions of L and S segments for the 60 pre-bottleneck clones

Molecular evidence?



Duffy, Dennehy et al. (unpubl)

non-synonymous 
synonymous

• more substitutions/genotype
• more inferred haplotypes

Molecular evidence?



IS THERE A LINK BETWEEN 
ROBUSTNESS AND EVOLVABILITY?



Does robustness promote evolvability?

NO: Robustness reduces phenotypic variation, thereby
impeding selection 

YES: Robustness allows protein folding/stability despite mutation,
facilitating protein innovation



N0

% Survivors = (N1/N0) * 100

Temperature Survival Assay

Lysate

N1

5 min

Temperature 
Incubation
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Robust and brittle clones survive equally at 45oC
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Do robust clones show greater evolvability?

∆%S = %SEvolved - %SAncestral
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McBride et al. BMC Evol Biol 2008  
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Lineages founded by robust viruses are more evolvable

p = 0.01

McBride et al. BMC Evol Biol 2008



Mutability does not explain differences in evolvability

McBride et al. BMC Evol Biol 2008

p = 0.25



Ogbunugafor et al. 2009  
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Mechanism for genetic robustness?
Protein stability/thermotolerance



Summary 1

• Co-infection (complementation) weakens selection 
to maintain robustness

• Robust viruses more evolvable under heat shock

• Evolution itself has capacity to evolve



CAN ROBUSTNESS
BE SELECTED?



How can robustness be selected in phage φ6?

• Evolved changes in robustness led to differential 
evolvability of thermotolerance

• Robustness and thermotolerance seem to be correlated

• Thus, selection for thermotolerance should yield robustness
i.e., Bidirectional Selection should be possible

HYPOTHESIS: Robustness should evolve as a by-product of 
evolved thermotolerance  



Isolation of ancestor clones 

Plate from frozen
stock of wild type φ6

McBride and Turner (unpublished)

Choose 3 plaques 
at random

3
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Use each plaque to
initiate 2 ‘sister’ lineages

for evolution Wild type
ANC

Treatment Control  

T1 T2 T3 C1 C2 C3
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Experimental design

Thermal incubation
(5 min at 50oC)

Wild type
ANC

Treatment 
50C 

Control 
25C 

McBride and Turner (unpublished)

T1 T2 T3 C1 C2 C3



Post-evolution reaction norm
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• Treatment populations survive heat shock 
better than controls

• Are they also more robust against mutations?

Testing for the bidirectional response



Experimental design

Wild type
ANC

Treatment 

McBride and Turner (unpublished)

Testing for the bidirectional response

Control 

50 gen (10 days)

Isolate 6 clones 
per population

Chemical mutagenesis using BHT
(resistance in P6 gene) 



Experimental design

Wild type
ANC

Treatment 
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Testing for the bidirectional response

Control 

50 gen (10 days)

Isolate 6 clones 
per population

Chemical mutagenesis using BHT
(resistance in P6 gene) 

Isolate 6 clones 
per ancestor 

T1

T2

T3

C1

C2

C3



Measure fitness (W) on P. phaseolicola for each set of ancestor
clones before and after mutagenesis

∆ logW = logWpost-BHT – logWpre-BHT
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Measure fitness (W) on P. phaseolicola for each ancestor
and evolved lineage before and after mutagenesis

∆ logW = logWpost-BHT – logWpre-BHT

Prediction following evolution:

Var (∆logW)Treatment lineages   <  Var (∆logW)Control lineages

∆ logW 

0
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-5

-4

-3

-2

-1

0

1

2

C
hange i

 
 

 
 

P < 0.01

McBride and Turner (unpublished)

• Evolved thermotolerance fosters robustness
• Mutation accumulation assays underway

Post-evolution robustness 



What is the mechanism?

3 thermotolerance evolution studies
• Robust vs. Brittle clones evolved at 45oC

(McBride et al. 2008)
• Robust vs. Brittle populations evolved at 45oC

(Goldhill and Turner, unpubl.)
• Wild type clones evolved at 50oC

(McBride and Turner, unpubl.)

S segment:
P5 lysin gene mutation
G2238U transversion VF

Bulls-eye plaque at 25oC
Mildly deleterious allele 



phi6 P5 gene: robustness locus?

Cvirkaite-Krupovic et al 2010 J Gen Virol  
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Summary 2

• Adaptation to extreme heat shock broadens the 
thermal niche

• Selection for thermotolerance causes indirect 
selection for robustness (bidirectional response)

• The lysin gene may be underlying mechanism 
(global robustness regulator)
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